cnvnator安装及使用方法简介
1、安装gcc
推荐yum安装,自己寻找依存关系,版本当在4.8以上。
2、安装root
a、下载root_v6.03.04.source.tar.gz
1 2 | yum install git make gcc-c++ gcc binutils libX11-devel libXpm-devel libXft-devel libXext-devel yum install gcc-gfortran openssl-devel pcre-devel mesa-libGL-devel glew-devel ftgl-devel mysql-devel fftw-devel cfitsio-devel graphviz-devel avahi-compat-libdns_sd-devel libldap-dev python-devel libxml2-devel gsl-static |
b、cd root-6.03.04
1 2 3 4 5 6 | ./configure make source bin/thisroot.sh root 报错:*** DISPLAY not set, setting it to 192.168.1.xx:0.0 执行:export DISPLAY=:0.0 |
3、安装CNVnator
1 2 3 4 5 6 7 8 9 10 11 | 下载CNVnator_v0.3.zip unzip CNVnator_v0.3.zip cd ./CNVnator_v0.3/src/samtools #编译samtools之前一定要确定安装 ncurses* yum -y install ncurses* make cd .. vi Makefile ##修改里面改为ROOTFLAGS = -m64 -std=c++11 -pthread ##将-lCint去掉 make |
4、使用方法
1 2 3 4 5 | /soft/CNVnator_v0.3/src/cnvnator -genome ./hg37.fa -root 2.root -chrom 1 2 3 -tree aln-pe.sam /soft/CNVnator_v0.3/src/cnvnator -genome ./hg37.fa -root 2.root -chrom 1 2 3 -d ../hg37/ -his 100 /soft/CNVnator_v0.3/src/cnvnator -genome ./hg37.fa -root 2.root -chrom 1 2 3 -stat 100 /soft/CNVnator_v0.3/src/cnvnator -genome ./hg37.fa -root 2.root -chrom 1 2 3 -partition 100 /soft/CNVnator_v0.3/src/cnvnator -genome ./hg37.fa -root 2.root -chrom 1 2 3 -call 100 > cnvout.txt |
相关推荐:
- NCBI在线BLAST使用方法与结果详解 2938
- 神经网络术语:Epoch、Batch Size和迭代 527
- Consed的安装与使用教程 465
- 陈连福的NGS生物信息学培训教材V2.1 277
- WGCNA分析使用教程 272
-
***3可爱雨过晴空 2017-12-14 15:01#2
非常感谢您的解答! 我再请教您一个问题啊,就是我发现好像CNVnator不能处理case-control的sample, 那么对于这种有normal-tumor的成对样本,您觉得用什么做CNV分析比较好呢?
-
***1mengfanrui 2017-10-06 02:40#3
**How to select the bin size?1. the ratio of mean to sigam is roughly 4-5; -eval returns values of mean and sigma once histograms are calculated eg: cnvnator -root my.root -his 1000 -d dir_with_chrom_fas cnvnator -root my.root -eval 10002. Specifically, given the same data quality and read length, we observed that the optimal bin size, and thus breakpoint resolution accuracy, scales roughly inversely with the coverage, resulting in ~100-bp bins for 20–30X coverage; ~500-bp bins for 4–6X coverage, and ~30-bp bins for ~100X coverage.**How to filter the results from cnvnator? 1. q0<0.5 2. the first e-value(it is like the blast e-value) is small**批量获得genotype 和 Rd value awk '{print $2}END{print "exit"}' out.cnv | cnvnator -root out.root -genotype 100**-1 for q0 means it couldn’t be calculated. The likely reason is that no reads were mapped in that region.
最新创建圈子
-
原料药研发及国内外注册申报
2019-01-25 10:41圈主:caolianhui 帖子:33 -
制药工程交流
2019-01-25 10:40圈主:polysciences 帖子:30 -
健康管理
2019-01-25 10:40圈主:neuromics 帖子:20 -
发酵技术
2019-01-25 10:39圈主:fitzgerald 帖子:17 -
医学肿瘤学临床试验
2019-01-25 10:39圈主:bma 帖子:58
bin size的选择不是经验值,bin size的选择有两个标准:1. mean to sigma的比率大概在4-5之间, 计算mean to sigma的命令为:cnvnator -root my.root -eval2. 跟测序深度有关系:given the same data quality and read length, we observed that the optimal bin size, and thus breakpoint resolution accuracy, scales roughly inversely with the coverage, resulting in ~100-bp bins for 20–30X coverage; ~500-bp bins for 4–6X coverage, and ~30-bp bins for ~100X coverage.至于具体的bin size的选择,就要根据这两条去权衡。