radiology vcu,Cell Injury Controller II (CIC II)

点击图片查看原图
单价: 22.00
品牌: radiology vcu
销量: 累计出售 0
评价: 已有 0 条评价
人气: 已有 249 人关注
更新: 2021-07-26
数量: 减少 增加份 库存999份
立即购买   加入购物车
看了又看 更多>
 
 
货号: CIC II
供应商: radiology vcu世联博研公司

联博研北京科技有限公司为美国flexcell bioflex拉伸培养板(皿)、FX-5000T细胞牵张拉伸应力加载系统、FX-5000C细胞压力加载系统、TissueTrain System细胞牵张加载系统以及radiology.vcu大学的液压颅脑损伤仪(FPI),电子颅脑损伤仪(eCCI、细胞颅脑损伤仪(CIC)等全系列细胞组织牵张拉伸损伤产品在中国的独家授权代理, 为广大科研用户提供flexcell全系列产品,详情致电咨询索取资料.

 

创伤性脑损伤是神经外科最常见的疾病,是导致创伤患者伤残及死亡的主要原因。研究脑损伤后的神经生化、神经病理生理等方面的变化,可为探索行之有效的脑保护治疗提供帮助,将有助于提高颅脑损伤患者的生存率及生存质量。故建立各种便于观察和施加干预因素、控制性佳、可分级、可复制性好并符合人类脑创伤特点的创伤性脑损伤模型,是目前创伤性脑损伤的研究热点。
VCU动物颅脑损伤仪可以分为:

  • 液压颅脑损伤仪(FPI),

  • 电子颅脑损伤仪(eCCI)

  • 细胞颅脑损伤仪(CIC)

这三种产品己广泛应用于世界范围内的颅脑创伤研究中心,是目前唯一的颅脑创伤模型制作的金标准。同时,损伤仪还可应用到眼科损伤模型,细胞损伤仪可以应用到其它种类细胞损伤模型的制作。
弗吉尼亚州立大学放射学系所有定制的设备都是由CDF(定制设计与制造)制作的。2000年的时候,CDF公司(定制设计与制造公司)建立了一个成本核算中心,以便拓展与其他需要定制设备的客户的商业联系。目前CDF公司提供了在机械和电子工程设备定制的全面服务。除了网页上面展示的产品外,我们还提供给用户定制服务,希望您有想法告诉我们,我们帮您实现。

 


液压颅脑损伤仪(FPI)
Fluid Percussion Injury
液压冲击损伤仪(Fluid Percussion Injury)是由VCU大学所制作设计的,针对神经创伤机制研究。成为全球研究神经创伤广泛使用的仪器,基本的组件是采取最先进的Power coating process技术,铝制部分的组件都已经电镀以避免氧化且可以长久使用。液压冲击脑损伤仪可以重复一致的产生液压冲击损伤(FPI)。
系统优点:

  • 可方便的排除气饱。

  • 角度刻度可方便观察撞击角度。

  • 集成压基准力输出,方便校准。可输出精确冲击压力。

  • 配备高精度的压力传感

 

电子颅脑损伤仪(eCCI)
电子颅脑损伤仪(eCCI),electric Cortical Contusion Impactor
由VCU大学所制作设计的电子大脑皮质挫伤撞击仪(electric Cortical Contusion Impactor),主要针对脑皮质挫伤模型。是神经损伤研究机构最受欢迎的损伤模型制作工具。电子大脑皮质挫伤撞击仪(eCCI)的组件有: 坚固的铝架,动物平台,撞击控制器和撞击头。动物平台可以和各种立体定位仪搭配使用。eCCI电子大脑皮质挫伤撞击仪使用高级的线性马达驱动撞击头,并由控制器来控制撞击参数,实现不同程度的损伤。撞击头的组件部分有含感应器,可以确定速率、撞击深度及撞击停留。这些撞击参数完全可以重复实现。


与传统Feeney’s自由落体硬膜外撞击方法相比有以下优点:
可精确连续的控制撞击速度,并获得实际撞击深度和停留时间等参数。而非重量差异很大的撞击。由于可精确控制撞击速度和获得实际撞击结果参数,eCCI电子大脑皮质挫伤撞击仪可以精确重复制作挫伤损伤模型。减少动物死亡。使实验过程更加直观,可控。

 

产品型号:eCCI

产品品牌:CDF/USA

产品介绍:eCCI电子颅脑损伤仪,主要针对脑皮质挫伤模型,是神经损伤研究机构最受欢迎的损伤模型制作工具,其动物平台可以和多种脑立体定位仪搭配使用。

与传统Feeneys自由落体硬膜外撞击方法相比有以下优点:可精确连续地控制撞击速度,并获得实际撞击深度和停留时间等参数;精确重复性高,动物死亡率低,实验过程直观,可控。

技术参数:

v  撞击速率:0-5.34m/s

v  撞击深度:0-3mm

v  停留时间:0-100ms

v  撞击头可180度旋转

v  可与脑立体定位仪配合使用


细胞颅脑损伤仪(CIC)
细胞颅脑损伤仪(CIC),Cell Injury Controller II
细胞损伤控制仪(Cell Injury Controller II)采取电子式控制,采取电子式控制,适合脑源性细胞培养样品,或其它离体培养细胞的牵张性损伤模型制作。损伤后可进行神经生化、形态学、生理学,药物干预等方面的研究。
细胞损伤控制仪使用Flexcell公司的Tissue Train ? 三维细胞组织应力加载系统。
细胞损伤控制仪平均把压缩气体送到每个培养室,以造成培养组织牵张性的损伤,损伤的严重程度是依靠控制进出密闭培养室的气体量。养室的峰值压力同时被记录下来,这个数值可以用来精确地表明引起牵张性细胞损伤的气压值。细胞损伤控制仪(CIC II)可以搭配Flex I29.45cm2 柔性基底培养 I (针对VCU早期的细胞损伤控制仪)或BioFlex? 57.75cm2 柔性基底培养板。因为根据所采用的细胞种类、损伤的程度、培养的状况,受损后的细胞或许会因为上述因素死亡或修复,所以VCU的细胞损伤控制仪(CIC II)很适合应用在下列损伤反应研究:细胞受损、修护,死亡,药物介入。

损伤水平

大概膜伸展

Model 94A- Felx I
膜变形

CIC II-Flex I
伤等效峰值压力范围

CIC II –BioFlex
等效损伤峰值压力范围

120%

5.5毫米

8.2 - 8.8 PSI

1.8 - 2.0 PSI

135%

6.5毫米

10.0 - 10.5 PSI

2.5 - 3.0 PSI

严重

155%

7.5毫米

11.0 -11.5 PSI

3.5 -4.5 PSI

*Note that the CIC Model 94A Flex I deformation data is the measured distension of a dry reference well. The corresponding peak pressure values are based on the anticipated injury deformation with the addition of 1 ml of fluid media. The presence of 1 ml of fluid increases the deformation approximately 5 percent over the reference well measurement.

 

 

 

 

美国Flexcellint国际公司,成立于1987年,该公司专注于细胞力学培养产品的设计和制造。以提供独特的体外细胞拉应力、压应力和流体剪切应力加载刺激系统以及配套的培养板、硅胶膜载片等耗材闻名于世。
世联博研北京科技有限公司是Flexcell细胞力学设备与耗材在中国大陆、香港、澳门、马来西亚、新加波区域总授权代理商, 为广大科研用户提供flexcell全系列产品,详情致电.


Flexcell公司的FX-5000TT型号的Tissue Train 三维细胞组织应力加载系统

对生长在三维状态下的细胞进行静态的或者周期性的应力刺激。
使用三维组织培养模具和三维细胞培养板可以进行三维细胞培养
通过Flexcell应力加载系统和弧矩形加载平台对生长在三维环境下的细胞进行单轴向或者双轴向的静态或者周期性的应力加载实验。
使用Flexcell程序,可建立特制的各种模拟实验:心率模拟实验,步行模拟实验,跑动模拟实验和其他动力模拟实验。
构建长度达35mm的生物人工组织
使用标准正立式显微镜实时观察细胞在三维状态下的反应


FX-5000T细胞牵张拉伸应力加载系统(Flexcell FX5000 Tension system)

系统基本原理(负气压交换模式):
橡胶密封垫在细胞培养板基底膜与基板之间形成封闭腔,把此密封腔的进、出气管插入二氧化碳培养箱里,把此密封腔放入二氧化碳培养箱, 利用封闭腔抽真空产生的负压使弹性基底膜(拉动三维支架)发生形变,通过计算机控制系统调节气体的压力来改变基底膜的形变量,进而使贴壁生长的细胞受到牵拉加载刺激。
亮点:
1)该系统对二维、三维细胞和组织各种培养物提供轴向和圆周应力加载;不但具有双轴向拉伸力加载,还具备单轴向加力功能
2)计算机控制的应力加载系统,为体外培育的细胞提供精确的、可控制的、可重复的、静态的或者周期性的应力变化。
3)使用真空泵,抻拉培养板底部的弹性硅胶模,细胞培养板底部最高伸展度可达到33%,通过气体装置可以自动调节和控制应力。
4)基于柔性膜基底变形、受力均匀;
5)可实时观察细胞、组织在应力作用下的反应;
6)独具的flexstop隔离阀可使同一块培养板力的一部分培养孔的细胞受力,一部分培养孔的细胞不受力,方便对比实验;
7)与压力传导仪整合,同时兼备多通道细胞压力加载功能;
8)与Flex Flow平行板流室配套,可在牵拉细胞的同时施加流体切应力;
9)多达4通道,可4个不同程序同时运行,进行多个不同拉伸形变率对比实验;
10)同一程序中可以运行多种频率,多种振幅和多种波形;
11)加载模拟波形种类丰富:静态波形、正旋波形、心动波形、三角波形、矩形以及各种特制波形;
12)更好地控制在超低或超高应力下的波形;
13)电脑系统对牵张拉伸力加载周期、大小、频率、持续时间精确智能调控
14)加载分析各种细胞在牵张拉应力刺激下的生物化学反应
15)伸展度范围广:0-33%
16)牵拉频率范围广:0.01-5Hz
BioFLEX双向应力细胞培养板(BioFLEX?CULTURE PLATES)

  • BioFlex细胞培养板和FX-5000T应力加载系统配套使用,为细胞提供应力加载。

  • 孔板底部是由弹性硅胶模制作而成,柔韧性好,透明度高。

  • 6孔圆形,总生长面积57.75 cm2(9.62 cm2/孔).

  • 孔板底部的硅胶模超薄,厚度仅为0.020",(0.0508cm)可以使用标准正立式显微镜/倒立显微镜观察细胞。

  • 五种不同包被的培养表面:Amino, Collagen (Type I or IV), Elastin, ProNectin (R GD), Laminin (YIGSR).
    Covalently bound matrix surfaces: Amino, Collagen (Type I or IV), Elastin, Pronectin?(RGD), and Laminin (YIGSR).(包被材料选择参考)

  • 光学性能佳,自身荧光低。

  • 当与圆柱形加载平台共同使用时,可以对细胞进行均匀的径向和圆周应力加载。

产品编号

产品名称

BF-3001U-Case(每箱40块)

BioFlex Culture Plate-Untreated(6孔表面未处理的BioFLEX?双向应力细胞培养板)

BF-3001A-Case(每箱40块)

BioFlex Culture Plate-Amino (6孔氨基BioFLEX?双向应力细胞培养板)

BF-3001C-Case(每箱40块)

BioFlex Culture Plate-Collagen Type I (6孔胶原I 型BioFLEX?双向应力细胞培养板)

BF-3001C(IV)-Case(每箱40块)

BioFlex Culture Plate-Collagen Type IV (6孔胶原IV型BioFLEX?双向应力细胞培养板)

BF-3001E-Case(每箱40块)

BioFlex Culture Plate-Elastin (6孔弹力BioFLEX?双向应力细胞培养板)

BF-3001P-Case(每箱40块)

BioFlex Culture Plate-ProNectin (6孔 ProNectin BioFLEX?双向应力细胞培养板)

BF-3001L-Case(每箱40块)

BioFlex Culture Plate-Laminin (6孔层粘连蛋白BioFLEX?双向应力细胞培养板)

bioflex牵张拉伸损伤培养板皿包被涂层选择指导
Flexcell 牵张拉伸损伤文献
美国Fexcell?研制的体外细胞组织拉应力、压应力、和流体剪切力加载仿真模拟模型系统智能、精准诱导来自各种细胞、组织在拉力、压力和流体切应力等体外机械力刺激作用下发生的生化生理变化,专业、细腻的阐释了体外细胞、组织机械力刺激加载、力学信号感受和响应机制。国内外有近3000篇成功应用文献案例,详见应用案例文献库,是细胞组织力学研究者的首选。
Halachmi S, Aitken KJ, Szybowska M, Sabha N, Dessouki S, Lorenzo A, Tse D, Bagli DJ. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells.
Cell Tissue Res 326(1):149-158, 2006.

Upadhyay J, Aitken KJ, Damdar C, Bolduc S, Bagli DJ. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J Urol 169(2):750-755, 2003.

Birukova AA, Tian Y, Meliton A, Leff A, Wu T, Birukov KG. Stimulation of Rho signaling by pathologic mechanical stretch is a "second hit" to Rho-independent lung injury induced by IL-6. Am J Physiol Lung Cell Mol Physiol 302(9):L965-75, 2012. doi: 10.1152/ajplung.00292.2011. Epub 2012 Feb 17.

Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, Standley PR. In vitro modeling of repetitive motion injury and myofascial release. J Bodyw Mov Ther 14(2):162-171, 2010. Epub 2010 Jan 29.

Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in vent
Birukova AA, Fu P, Xing J, Cokic I, Birukov KG. Lung endothelial barrier protection by iloprost in the 2-hit models of ventilator-induced lung injury (VILI) involves inhibition of Rho signaling. Transl Res 155(1):44-54, 2010.

Birukova AA, Tian Y, Meliton A, Leff A, Wu T, Birukov KG. Stimulation of Rho signaling by pathologic mechanical stretch is a "second hit" to Rho-independent lung injury induced by IL-6. Am J Physiol Lung Cell Mol Physiol 302(9):L965-75, 2012. doi: 10.1152/ajplung.00292.2011. Epub 2012 Feb 17.

25. Dubrovskyi O, Birukova AA, Birukov KG. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab Invest 93(2):254-63, 2013. doi: 10.1038/labinvest.2012.159. Epub 2012 Nov 19.

Eckle T, Brodsky K, Bonney M, Packard T, Han J, Borchers CH, Mariani TJ, Kominsky DJ, Mittelbronn M, Eltzschig HK. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium.PLoS Biol 11(9):e1001665, 2013. doi: 10.1371/journal.pbio.1001665. Epub 2013 Sep 24.

Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. The Journal of Immunology 178:8127-8137, 2007.

Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in ven

Lee HS, Wang Y, Maciejewski BS, Esho K, Fulton C, Sharma S, Sanchez-Esteban J.Interleukin-10 protects cultured fetal rat type II epithelial cells from injury induced by mechanical stretch. Am J Physiol Lung Cell Mol Physiol 294:L225–L232, 2008.

Makena PS, Luellen CL, Balazs L, Ghosh MC, Parthasarathi K, Waters CM, Sinclair SE. Preexposure to hyperoxia causes increased lung injury and epithelial apoptosis in mice ventilated with high tidal volumes. Am J Physiol Lung Cell Mol Physiol299(5):L711-L719, 2010. Epub 2010 Sep 10.

Arundine M, Chopra GK, Wrong A, Lei S, Aarts MM, MacDonald JF, Tymianski M. Enhanced vulnerability to NMDA toxicity in sublethal traumatic neuronal injury in vitro.Journal of Neurotrauma 20(12):1377-1395, 2003.

Gladman SJ, Huang W, Lim SN, Dyall SC, Boddy S, Kang JX, Knight MM, Priestley JV, Michael-Titus AT. Improved outcome after peripheral nerve injury in mice with increased levels of endogenous ω-3 polyunsaturated fatty acids. J Neurosci 32(2):563-571, 2012.

Lau A, Arundine M, Sun HS, Jones M, Tymianski M. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26(45):11540-11553, 2006.

Ebihara S, Hussain SN, Danialou G, Cho WK, Gottfried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med165(2):221-228, 2002.

Tsivitse SK, Mylona E, Peterson JM, Gunning WT, Pizza FX. Mechanical loading and injury induce human myotubes to release neutrophil chemoattractants. Am J Physiol Cell Physiol 288(3):C721-C729, 2005.

Ni J, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem 285(6):4038-4048, 2010. Epub 2009 Nov 23.

Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF. Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74(5):1951-1960, 2000.
2. Ahmed SM, Weber JT, Liang S, Willoughby

Ellis EF, Willoughby KA, Sparks SA, Chen T. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 101(6):1463-1470, 2007. Epub 2007 Apr 2

Floyd CL, Gorin FA, Lyeth BG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51(1):35-46, 2005.

Floyd CL, Rzigalinski BA, Weber JT, Sitterding HA, Willoughby KA, Ellis EF.Traumatic injury of cultured astrocytes alters inositol (1,4,5)-trisphosphate-mediated signaling. Glia 33(1):12-23, 2001.

Goforth PB, Ellis EF, Satin LS. Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 19(17):7367-7374, 1999.

Goforth PB, Ellis EF, Satin LS. Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway. Journal of Neurotrauma 21(6):719-732, 2004.

Kao CQ, Goforth PB, Ellis EF, Satin LS. Potentiation of GABA(A) currents after mechanical injury of cortical neurons. Journal of Neurotrauma 21(3):259-270, 2004.

Lapanantasin S, Chongthammakun S, Floyd CL, Berman RF. Effects of 17β-estradiol on intracellular calcium changes and neuronal survival after mechanical strain injury in neuronal-glial cultures. Synapse 60(5):406-410, 2006.

McKinney JS, Willoughby KA, Liang S, Ellis EF. Stretch-induced injury of cultured neuronal, glial, and endothelial cells. Effect of polyethylene glycol-conjugated superoxide dismutase. Stroke 27(5):934-940, 1996.

Neary JT, Kang Y, Tran M, Feld J. Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. Journal of Neurotrauma 22(4):491-500, 2005.

Neary JT, Kang Y, Willoughby KA, Ellis EF. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23(6):2348-2356, 2003

Rzigalinski BA, Liang S, McKinney JS, Willoughby KA, Ellis EF. Effect of Ca2+ on in vitro astrocyte injury. J Neurochem 68(1):289-296, 1997.
McKinney JS, Willoughby KA, Liang S, Ellis EF. Stretch-induced injury of cultured neuronal, glial, and endothelial cells. Effect of polyethylene glycol-conjugated superoxide dismutase. Stroke 27(5):934-940, 1996.

Neary JT, Kang Y, Tran M, Feld J. Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. Journal of Neurotrauma 22(4):491-500, 2005.

Neary JT, Kang Y, Willoughby KA, Ellis EF. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23(6):2348-2356, 2003.

Slemmer JE, Matser EJ, De Zeeuw CI, Weber JT. Repeated mild injury causes cumulative damage to hippocampal cells. Brain 125(Pt 12):2699-2709, 2002.

Slemmer JE, Zhu C, Landshamer S, Trabold R, Grohm J, Ardeshiri A, Wagner E, Sweeney MI, Blomgren K, Culmsee C, Weber JT, Plesnila N. Causal role of apoptosis-inducing factor for neuronal cell death following traumatic brain injury. Am J Pathol 173(6):1795-1805, 2008. Epub 2008 Nov 6.

Tavalin SJ, Ellis EF, Satin LS. Inhibition of the electrogenic Na pump underlies delayed depolarization of cortical neurons after mechanical injury or glutamate. J Neurophysiol 77:632-638, 1997.

Weber JT, Rzigalinski BA, Ellis EF. Traumatic injury of cortical neurons causes changes in intracellular calcium stores and capacitative calcium influx. J Biol Chem276(3):1800-1807, 2001.

Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF. Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 26(6):289-299, 1999.

Willoughby KA, Kleindienst A, Muller C, Chen T, Muir JK, Ellis EF. S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem91(6):1284-1291, 2004.

Tymianski M. Method of screening peptides useful in treating traumatic injury to the brain or spinal cord. Issued March 31, 2009. Patent No. 7,510,824.
索取多更应用案例文献请致电